Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Sci Rep ; 11(1): 23930, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907264

RESUMO

Eccentric (ECC) and concentric (CON) contractions induce distinct muscle remodelling patterns that manifest early during exercise training, the causes of which remain unclear. We examined molecular signatures of early contraction mode-specific muscle adaptation via transcriptome-wide network and secretome analyses during 2 weeks of ECC- versus CON-specific (downhill versus uphill running) exercise training (exercise 'habituation'). Despite habituation attenuating total numbers of exercise-induced genes, functional gene-level profiles of untrained ECC or CON were largely unaltered post-habituation. Network analysis revealed 11 ECC-specific modules, including upregulated extracellular matrix and immune profiles plus downregulated mitochondrial pathways following untrained ECC. Of 3 CON-unique modules, 2 were ribosome-related and downregulated post-habituation. Across training, 376 ECC-specific and 110 CON-specific hub genes were identified, plus 45 predicted transcription factors. Secreted factors were enriched in 3 ECC- and/or CON-responsive modules, with all 3 also being under the predicted transcriptional control of SP1 and KLF4. Of 34 candidate myokine hubs, 1 was also predicted to have elevated expression in skeletal muscle versus other tissues: THBS4, of a secretome-enriched module upregulated after untrained ECC. In conclusion, distinct untrained ECC and CON transcriptional responses are dampened after habituation without substantially shifting molecular functional profiles, providing new mechanistic candidates into contraction-mode specific muscle regulation.


Assuntos
Adaptação Fisiológica , Exercício Físico , Contração Muscular , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Transcriptoma , Adulto , Humanos , Masculino
2.
PLoS Genet ; 17(9): e1009803, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34570759

RESUMO

SNIP1 (Smad nuclear interacting protein 1) is a widely expressed transcriptional suppressor of the TGF-ß signal-transduction pathway which plays a key role in human spliceosome function. Here, we describe extensive genetic studies and clinical findings of a complex inherited neurodevelopmental disorder in 35 individuals associated with a SNIP1 NM_024700.4:c.1097A>G, p.(Glu366Gly) variant, present at high frequency in the Amish community. The cardinal clinical features of the condition include hypotonia, global developmental delay, intellectual disability, seizures, and a characteristic craniofacial appearance. Our gene transcript studies in affected individuals define altered gene expression profiles of a number of molecules with well-defined neurodevelopmental and neuropathological roles, potentially explaining clinical outcomes. Together these data confirm this SNIP1 gene variant as a cause of an autosomal recessive complex neurodevelopmental disorder and provide important insight into the molecular roles of SNIP1, which likely explain the cardinal clinical outcomes in affected individuals, defining potential therapeutic avenues for future research.


Assuntos
Alelos , Amish/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas de Ligação a RNA/genética , Expressão Gênica/genética , Genes Recessivos , Humanos
3.
Cell Biosci ; 11(1): 144, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301309

RESUMO

BACKGROUND: Beta cell identity changes occur in the islets of donors with diabetes, but the molecular basis of this remains unclear. Protecting residual functional beta cells from cell identity changes may be beneficial for patients with diabetes. RESULTS: A somatostatin-positive cell population was induced in stressed clonal human EndoC-ßH1 beta cells and was isolated using FACS. A transcriptomic characterisation of somatostatin-positive cells was then carried out. Gain of somatostatin-positivity was associated with marked dysregulation of the non-coding genome. Very few coding genes were differentially expressed. Potential candidate effector genes were assessed by targeted gene knockdown. Targeted knockdown of the HNRNPD gene induced the emergence of a somatostatin-positive cell population in clonal EndoC-ßH1 beta cells comparable with that we have previously reported in stressed cells. CONCLUSIONS: We report here a role for the HNRNPD gene in determination of beta cell identity in response to cellular stress. These findings widen our understanding of the role of RNA binding proteins and RNA biology in determining cell identity and may be important for protecting remaining beta cell reserve in diabetes.

4.
J Cachexia Sarcopenia Muscle ; 12(3): 629-645, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33951310

RESUMO

BACKGROUND: Skeletal muscle atrophy manifests across numerous diseases; however, the extent of similarities/differences in causal mechanisms between atrophying conditions in unclear. Ageing and disuse represent two of the most prevalent and costly atrophic conditions, with resistance exercise training (RET) being the most effective lifestyle countermeasure. We employed gene-level and network-level meta-analyses to contrast transcriptomic signatures of disuse and RET, plus young and older RET to establish a consensus on the molecular features of, and therapeutic targets against, muscle atrophy in conditions of high socio-economic relevance. METHODS: Integrated gene-level and network-level meta-analysis was performed on publicly available microarray data sets generated from young (18-35 years) m. vastus lateralis muscle subjected to disuse (unilateral limb immobilization or bed rest) lasting ≥7 days or RET lasting ≥3 weeks, and resistance-trained older (≥60 years) muscle. RESULTS: Disuse and RET displayed predominantly separate transcriptional responses, and transcripts altered across conditions were mostly unidirectional. However, disuse and RET induced directly inverted expression profiles for mitochondrial function and translation regulation genes, with COX4I1, ENDOG, GOT2, MRPL12, and NDUFV2, the central hub components of altered mitochondrial networks, and ZMYND11, a hub gene of altered translation regulation. A substantial number of genes (n = 140) up-regulated post-RET in younger muscle were not similarly up-regulated in older muscle, with young muscle displaying a more pronounced extracellular matrix (ECM) and immune/inflammatory gene expression response. Both young and older muscle exhibited similar RET-induced ubiquitination/RNA processing gene signatures with associated PWP1, PSMB1, and RAF1 hub genes. CONCLUSIONS: Despite limited opposing gene profiles, transcriptional signatures of disuse are not simply the converse of RET. Thus, the mechanisms of unloading cannot be derived from studying muscle loading alone and provides a molecular basis for understanding why RET fails to target all transcriptional features of disuse. Loss of RET-induced ECM mechanotransduction and inflammatory profiles might also contribute to suboptimal ageing muscle adaptations to RET. Disuse and age-dependent molecular candidates further establish a framework for understanding and treating disuse/ageing atrophy.


Assuntos
Treinamento de Força , Idoso , Humanos , Hipertrofia , Mecanotransdução Celular , Músculo Esquelético , Atrofia Muscular/genética , Transcriptoma
5.
mBio ; 11(4)2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32788384

RESUMO

Amino acid metabolism is crucial for fungal growth and development. Ureohydrolases produce amines when acting on l-arginine, agmatine, and guanidinobutyrate (GB), and these enzymes generate ornithine (by arginase), putrescine (by agmatinase), or GABA (by 4-guanidinobutyrase or GBase). Candida albicans can metabolize and grow on arginine, agmatine, or guanidinobutyrate as the sole nitrogen source. Three related C. albicans genes whose sequences suggested that they were putative arginase or arginase-like genes were examined for their role in these metabolic pathways. Of these, Car1 encoded the only bona fide arginase, whereas we provide evidence that the other two open reading frames, orf19.5862 and orf19.3418, encode agmatinase and guanidinobutyrase (Gbase), respectively. Analysis of strains with single and multiple mutations suggested the presence of arginase-dependent and arginase-independent routes for polyamine production. CAR1 played a role in hyphal morphogenesis in response to arginine, and the virulence of a triple mutant was reduced in both Galleria mellonella and Mus musculus infection models. In the bloodstream, arginine is an essential amino acid that is required by phagocytes to synthesize nitric oxide (NO). However, none of the single or multiple mutants affected host NO production, suggesting that they did not influence the oxidative burst of phagocytes.IMPORTANCE We show that the C. albicans ureohydrolases arginase (Car1), agmatinase (Agt1), and guanidinobutyrase (Gbu1) can orchestrate an arginase-independent route for polyamine production and that this is important for C. albicans growth and survival in microenvironments of the mammalian host.


Assuntos
Agmatina/metabolismo , Arginina/metabolismo , Candida albicans/enzimologia , Candida albicans/patogenicidade , Proteínas Fúngicas/metabolismo , Ureo-Hidrolases/metabolismo , Aminoácidos/metabolismo , Animais , Arginase/genética , Arginase/metabolismo , Clonagem Molecular , Feminino , Larva/microbiologia , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos BALB C , Mariposas/microbiologia , Células RAW 264.7 , Ureo-Hidrolases/genética , Virulência
6.
Front Genet ; 11: 375, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391057

RESUMO

Candida albicans is a normal member of the human microbiome. It is also an opportunistic pathogen, which can cause life-threatening systemic infections in severely immunocompromized individuals. Despite the availability of antifungal drugs, mortality rates of systemic infections are high and new drugs are needed to overcome therapeutic challenges including the emergence of drug resistance. Targeting known disease pathways has been suggested as a promising avenue for the development of new antifungals. However, <30% of C. albicans genes are verified with experimental evidence of a gene product, and the full complement of genes involved in important disease processes is currently unknown. Tools to predict the function of partially or uncharacterized genes and generate testable hypotheses will, therefore, help to identify potential targets for new antifungal development. Here, we employ a network-extracted ontology to leverage publicly available transcriptomics data and identify potential candidate genes involved in disease processes. A subset of these genes has been phenotypically screened using available deletion strains and we present preliminary data that one candidate, PEP8, is involved in hyphal development and immune evasion. This work demonstrates the utility of network-extracted ontologies in predicting gene function to generate testable hypotheses that can be applied to pathogenic systems. This could represent a novel first step to identifying targets for new antifungal therapies.

7.
BMC Med Genomics ; 13(1): 64, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312268

RESUMO

BACKGROUND: Circular RNAs are non-coding RNA molecules with gene regulatory potential that have been associated with several human diseases. They are stable and present in the circulation, making them excellent candidates for biomarkers of disease. Despite their promise as biomarkers or future therapeutic targets, information on their expression and functionality in human pancreatic islets is a relatively unexplored subject. METHODS: Here we aimed to produce an enriched circRNAome profile for human pancreatic islets by CircleSeq, and to explore the relationship between circRNA expression, diabetes status, genotype at T2D risk loci and measures of glycaemia (insulin secretory index; SI and HbA1c) in human islet preparations from healthy control donors and donors with type 2 diabetes using ANOVA or linear regression as appropriate. We also assessed the effect of elevated glucose, cytokine and lipid and hypoxia on circRNA expression in the human beta cell line EndoC-ßH1. RESULTS: We identified over 2600 circRNAs present in human islets. Of the five most abundant circRNAs in human islets, four (circCIRBP, circZKSCAN, circRPH3AL and circCAMSAP1) demonstrated marked associations with diabetes status. CircCIRBP demonstrated an association with insulin secretory index in isolated human islets and circCIRBP and circRPH3AL displayed altered expression with elevated fatty acid in treated EndoC-ßH1 cells. CircCAMSAP1 was also noted to be associated with T2D status in human peripheral blood. No associations between circRNA expression and genotype at T2D risk loci were identified in our samples. CONCLUSIONS: Our data suggest that circRNAs are abundantly expressed in human islets, and that some are differentially regulated in the islets of donors with type 2 diabetes. Some islet circRNAs are also expressed in peripheral blood and the expression of one, circCAMSAP1, correlates with diabetes status. These findings highlight the potential of circRNAs as biomarkers for T2D.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Marcadores Genéticos , Intolerância à Glucose/patologia , Ilhotas Pancreáticas/patologia , RNA Circular/análise , RNA Circular/genética , Adulto , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Feminino , Intolerância à Glucose/sangue , Intolerância à Glucose/genética , Humanos , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Masculino
8.
Aging (Albany NY) ; 12(1): 740-755, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31910159

RESUMO

Resistance exercise (RE) remains a primary approach for minimising aging muscle decline. Understanding muscle adaptation to individual contractile components of RE (eccentric, concentric) might optimise RE-based intervention strategies. Herein, we employed a network-driven pipeline to identify putative molecular drivers of muscle aging and contraction mode responses. RNA-sequencing data was generated from young (21±1 y) and older (70±1 y) human skeletal muscle before and following acute unilateral concentric and contralateral eccentric contractions. Application of weighted gene co-expression network analysis identified 33 distinct gene clusters ('modules') with an expression profile regulated by aging, contraction and/or linked to muscle strength. These included two contraction 'responsive' modules (related to 'cell adhesion' and 'transcription factor' processes) that also correlated with the magnitude of post-exercise muscle strength decline. Module searches for 'hub' genes and enriched transcription factor binding sites established a refined set of candidate module-regulatory molecules (536 hub genes and 60 transcription factors) as possible contributors to muscle aging and/or contraction responses. Thus, network-driven analysis can identify new molecular candidates of functional relevance to muscle aging and contraction mode adaptations.


Assuntos
Adaptação Fisiológica , Envelhecimento , Contração Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Biologia Computacional/métodos , Exercício Físico , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Avaliação Geriátrica , Humanos , Masculino , Transcriptoma , Adulto Jovem
9.
Geroscience ; 42(1): 183-199, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31811527

RESUMO

Circular RNAs (circRNAs) are an emerging class of non-coding RNA molecules that are thought to regulate gene expression and human disease. Despite the observation that circRNAs are known to accumulate in older organisms and have been reported in cellular senescence, their role in aging remains relatively unexplored. Here, we have assessed circRNA expression in aging human blood and followed up age-associated circRNA in relation to human aging phenotypes, mammalian longevity as measured by mouse median strain lifespan and cellular senescence in four different primary human cell types. We found that circRNAs circDEF6, circEP300, circFOXO3 and circFNDC3B demonstrate associations with parental longevity or hand grip strength in 306 subjects from the InCHIANTI study of aging, and furthermore, circFOXO3 and circEP300 also demonstrate differential expression in one or more human senescent cell types. Finally, four circRNAs tested showed evidence of conservation in mouse. Expression levels of one of these, circPlekhm1, was nominally associated with lifespan. These data suggest that circRNA may represent a novel class of regulatory RNA involved in the determination of aging phenotypes, which may show future promise as both biomarkers and future therapeutic targets for age-related disease.


Assuntos
MicroRNAs , RNA Circular , Idoso , Envelhecimento/genética , Animais , Senescência Celular/genética , Força da Mão , Humanos , Longevidade/genética , Camundongos , Fenótipo
10.
PLoS One ; 14(10): e0222523, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31600225

RESUMO

The development of automatic methods for segmenting anatomy from medical images is an important goal for many medical and healthcare research areas. Datasets that can be used to train and test computer algorithms, however, are often small due to the difficulties in obtaining experts to segment enough examples. Citizen science provides a potential solution to this problem but the feasibility of using the public to identify and segment anatomy in a medical image has not been investigated. Our study therefore aimed to explore the feasibility, in terms of performance and motivation, of using citizens for such purposes. Public involvement was woven into the study design and evaluation. Twenty-nine citizens were recruited and, after brief training, asked to segment the spine from a dataset of 150 magnetic resonance images. Participants segmented as many images as they could within three one-hour sessions. Their accuracy was evaluated by comparing them, as individuals and as a combined consensus, to the segmentations of three experts. Questionnaires and a focus group were used to determine the citizens' motivation for taking part and their experience of the study. Citizen segmentation accuracy, in terms of agreement with the expert consensus segmentation, varied considerably between individual citizens. The citizen consensus, however, was close to the expert consensus, indicating that when pooled, citizens may be able to replace or supplement experts for generating large image datasets. Personal interest and a desire to help were the two most common reasons for taking part in the study.


Assuntos
Ciência do Cidadão/métodos , Pesquisa sobre Serviços de Saúde/métodos , Motivação , Coluna Vertebral/diagnóstico por imagem , Adolescente , Adulto , Idoso , Algoritmos , Estudos de Viabilidade , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Software , Adulto Jovem
11.
Aging (Albany NY) ; 11(7): 2111-2126, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30996129

RESUMO

Optimization of resistance exercise (RE) remains a hotbed of research for muscle building and maintenance. However, the interactions between the contractile components of RE (i.e. concentric (CON) and eccentric (ECC)) and age, are poorly defined. We used transcriptomics to compare age-related molecular responses to acute CON and ECC exercise. Eight young (21±1 y) and eight older (70±1 y) exercise-naïve male volunteers had vastus lateralis biopsies collected at baseline and 5 h post unilateral CON and contralateral ECC exercise. RNA was subjected to next-generation sequencing and differentially expressed (DE) genes tested for pathway enrichment using Gene Ontology (GO). The young transcriptional response to CON and ECC was highly similar and older adults displayed moderate contraction-specific profiles, with no GO enrichment. Age-specific responses to ECC revealed 104 DE genes unique to young, and 170 DE genes in older muscle, with no GO enrichment. Following CON, 15 DE genes were young muscle-specific, whereas older muscle uniquely expressed 147 up-regulated genes enriched for cell adhesion and blood vessel development, and 28 down-regulated genes involved in mitochondrial respiration, amino acid and lipid metabolism. Thus, older age is associated with contraction-specific regulation often without clear functional relevance, perhaps reflecting a degree of stochastic age-related dysregulation.


Assuntos
Envelhecimento/genética , Envelhecimento/fisiologia , Contração Muscular/genética , Contração Muscular/fisiologia , Treinamento de Força/métodos , Idoso , Regulação para Baixo , Ontologia Genética , Voluntários Saudáveis , Humanos , Masculino , Músculo Esquelético/fisiologia , RNA-Seq , Transcriptoma , Regulação para Cima , Adulto Jovem
12.
Proc Biol Sci ; 284(1861)2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28835561

RESUMO

Duplication of genes or genomes provides the raw material for evolutionary innovation. After duplication a gene may be lost, recombine with another gene, have its function modified or be retained in an unaltered state. The fate of duplication is usually studied by comparing extant genomes and reconstructing the most likely ancestral states. Valuable as this approach is, it may miss the most rapid evolutionary events. Here, we engineered strains of Saccharomyces cerevisiae carrying tandem and non-tandem duplications of the singleton gene IFA38 to monitor (i) the fate of the duplicates in different conditions, including time scale and asymmetry of gene loss, and (ii) the changes in fitness and transcriptome of the strains immediately after duplication and after experimental evolution. We found that the duplication brings widespread transcriptional changes, but a fitness advantage is only present in fermentable media. In respiratory conditions, the yeast strains consistently lose the non-tandem IFA38 gene copy in a surprisingly short time, within only a few generations. This gene loss appears to be asymmetric and dependent on genome location, since the original IFA38 copy and the tandem duplicate are retained. Overall, this work shows for the first time that gene loss can be extremely rapid and context dependent.


Assuntos
Evolução Molecular , Duplicação Gênica , Saccharomyces cerevisiae/genética , Aptidão Genética , Genoma Fúngico , Microrganismos Geneticamente Modificados/genética , Transcriptoma
13.
Microorganisms ; 5(1)2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28106722

RESUMO

Magnaporthe oryzae is the causal agent of rice blast disease, the most important infection of rice worldwide. Half the world's population depends on rice for its primary caloric intake and, as such, rice blast poses a serious threat to food security. The stages of M. oryzae infection are well defined, with the formation of an appressorium, a cell type that allows penetration of the plant cuticle, particularly well studied. However, many of the key pathways and genes involved in this disease stage are yet to be identified. In this study, I have used network-extracted ontologies (NeXOs), hierarchical structures inferred from RNA-Seq data, to identify pathways involved in appressorium development, which in turn highlights novel genes with potential roles in this process. This study illustrates the use of NeXOs for pathway identification from large-scale genomics data and also identifies novel genes with potential roles in disease. The methods presented here will be useful to study disease processes in other pathogenic species and these data represent predictions of novel targets for intervention in M. oryzae.

14.
Int J Epidemiol ; 46(2): 559-575, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28073954

RESUMO

Background: Previous studies have suggested that modern obesogenic environments accentuate the genetic risk of obesity. However, these studies have proven controversial as to which, if any, measures of the environment accentuate genetic susceptibility to high body mass index (BMI). Methods: We used up to 120 000 adults from the UK Biobank study to test the hypothesis that high-risk obesogenic environments and behaviours accentuate genetic susceptibility to obesity. We used BMI as the outcome and a 69-variant genetic risk score (GRS) for obesity and 12 measures of the obesogenic environment as exposures. These measures included Townsend deprivation index (TDI) as a measure of socio-economic position, TV watching, a 'Westernized' diet and physical activity. We performed several negative control tests, including randomly selecting groups of different average BMIs, using a simulated environment and including sun-protection use as an environment. Results: We found gene-environment interactions with TDI (Pinteraction = 3 × 10 -10 ), self-reported TV watching (Pinteraction = 7 × 10 -5 ) and self-reported physical activity (Pinteraction = 5 × 10 -6 ). Within the group of 50% living in the most relatively deprived situations, carrying 10 additional BMI-raising alleles was associated with approximately 3.8 kg extra weight in someone 1.73 m tall. In contrast, within the group of 50% living in the least deprivation, carrying 10 additional BMI-raising alleles was associated with approximately 2.9 kg extra weight. The interactions were weaker, but present, with the negative controls, including sun-protection use, indicating that residual confounding is likely. Conclusions: Our findings suggest that the obesogenic environment accentuates the risk of obesity in genetically susceptible adults. Of the factors we tested, relative social deprivation best captures the aspects of the obesogenic environment responsible.


Assuntos
Índice de Massa Corporal , Dieta , Exercício Físico , Interação Gene-Ambiente , Obesidade/genética , Adulto , Idoso , Bancos de Espécimes Biológicos , Meio Ambiente , Feminino , Predisposição Genética para Doença , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Regressão , Fatores de Risco , Comportamento Sedentário , Reino Unido
15.
BMC Evol Biol ; 16: 40, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26892785

RESUMO

BACKGROUND: Physical interactions between proteins are essential for almost all biological functions and systems. To understand the evolution of function it is therefore important to understand the evolution of molecular interactions. Of key importance is the evolution of binding specificity, the set of interactions made by a protein, since change in specificity can lead to "rewiring" of interaction networks. Unfortunately, the interfaces through which proteins interact are complex, typically containing many amino-acid residues that collectively must contribute to binding specificity as well as binding affinity, structural integrity of the interface and solubility in the unbound state. RESULTS: In order to study the relationship between interface composition and binding specificity, we make use of paralogous pairs of yeast proteins. Immediately after duplication these paralogues will have identical sequences and protein products that make an identical set of interactions. As the sequences diverge, we can correlate amino-acid change in the interface with any change in the specificity of binding. We show that change in interface regions correlates only weakly with change in specificity, and many variants in interfaces are functionally equivalent. We show that many of the residue replacements within interfaces are silent with respect to their contribution to binding specificity. CONCLUSIONS: We conclude that such functionally-equivalent change has the potential to contribute to evolutionary plasticity in interfaces by creating cryptic variation, which in turn may provide the raw material for functional innovation and coevolution.


Assuntos
Evolução Molecular , Proteínas de Saccharomyces cerevisiae/química , Aminoácidos/genética , Sítios de Ligação , Evolução Biológica , Duplicação Gênica , Genoma Fúngico , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/genética
16.
BMC Syst Biol ; 9 Suppl 6: S3, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26678917

RESUMO

BACKGROUND: Biological processes at the molecular level are usually represented by molecular interaction networks. Function is organised and modularity identified based on network topology, however, this approach often fails to account for the dynamic and multifunctional nature of molecular components. For example, a molecule engaging in spatially or temporally independent functions may be inappropriately clustered into a single functional module. To capture biologically meaningful sets of interacting molecules, we use experimentally defined pathways as spatial/temporal units of molecular activity. RESULTS: We defined functional profiles of Saccharomyces cerevisiae based on a minimal set of Gene Ontology terms sufficient to represent each pathway's genes. The Gene Ontology terms were used to annotate 271 pathways, accounting for pathway multi-functionality and gene pleiotropy. Pathways were then arranged into a network, linked by shared functionality. Of the genes in our data set, 44% appeared in multiple pathways performing a diverse set of functions. Linking pathways by overlapping functionality revealed a modular network with energy metabolism forming a sparse centre, surrounded by several denser clusters comprised of regulatory and metabolic pathways. Signalling pathways formed a relatively discrete cluster connected to the centre of the network. Genetic interactions were enriched within the clusters of pathways by a factor of 5.5, confirming the organisation of our pathway network is biologically significant. CONCLUSIONS: Our representation of molecular function according to pathway relationships enables analysis of gene/protein activity in the context of specific functional roles, as an alternative to typical molecule-centric graph-based methods. The pathway network demonstrates the cooperation of multiple pathways to perform biological processes and organises pathways into functionally related clusters with interdependent outcomes.


Assuntos
Biologia Computacional , Pleiotropia Genética , Saccharomyces cerevisiae/genética , Ontologia Genética , Redes Reguladoras de Genes , Anotação de Sequência Molecular , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Bioinformatics ; 31(3): 416-7, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25294920

RESUMO

SUMMARY: Gene duplication and loss are important processes in the evolution of gene families. Moreover, growth of families by duplication and retention is an important mechanism by which organisms gain new functions. Therefore the ability to infer the evolutionary histories of families is an important step in understanding the evolution of function. We have recently developed DupliPHY, a software tool to infer gene family histories using parsimony and maximum likelihood. Here, we present DupliPHY-Web a web server for DupliPHY that implements additional maximum likelihood functionality and provides users an intuitive interface to run DupliPHY. AVAILABILITY AND IMPLEMENTATION: DupliPHY-Web is available at www.bioinf.manchester.ac.uk/dupliphy/ CONTACT: : ryan.ames@manchester.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Evolução Molecular , Duplicação Gênica , Software , Humanos , Internet , Funções Verossimilhança , Filogenia
18.
PLoS One ; 9(6): e99480, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24921666

RESUMO

The complement of genes found in the genome is a balance between gene gain and gene loss. Knowledge of the specific genes that are gained and lost over evolutionary time allows an understanding of the evolution of biological functions. Here we use new evolutionary models to infer gene family histories across complete yeast genomes; these models allow us to estimate the relative genome-wide rates of gene birth, death, innovation and extinction (loss of an entire family) for the first time. We show that the rates of gene family evolution vary both between gene families and between species. We are also able to identify those families that have experienced rapid lineage specific expansion/contraction and show that these families are enriched for specific functions. Moreover, we find that families with specific functions are repeatedly expanded in multiple species, suggesting the presence of common adaptations and that these family expansions/contractions are not random. Additionally, we identify potential specialisations, unique to specific species, in the functions of lineage specific expanded families. These results suggest that an important mechanism in the evolution of genome content is the presence of lineage-specific gene family changes.


Assuntos
Evolução Molecular , Genes Fúngicos , Família Multigênica , Filogenia , Saccharomyces cerevisiae/genética , Bases de Dados Genéticas , Duplicação Gênica , Ontologia Genética , Reprodutibilidade dos Testes
19.
PLoS One ; 8(5): e62670, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23658761

RESUMO

Large-scale molecular interaction data sets have the potential to provide a comprehensive, system-wide understanding of biological function. Although individual molecules can be promiscuous in terms of their contribution to function, molecular functions emerge from the specific interactions of molecules giving rise to modular organisation. As functions often derive from a range of mechanisms, we demonstrate that they are best studied using networks derived from different sources. Implementing a graph partitioning algorithm we identify subnetworks in yeast protein-protein interaction (PPI), genetic interaction and gene co-regulation networks. Among these subnetworks we identify cohesive subgraphs that we expect to represent functional modules in the different data types. We demonstrate significant overlap between the subgraphs generated from the different data types and show these overlaps can represent related functions as represented by the Gene Ontology (GO). Next, we investigate the correspondence between our subgraphs and the Gene Ontology. This revealed varying degrees of coverage of the biological process, molecular function and cellular component ontologies, dependent on the data type. For example, subgraphs from the PPI show enrichment for 84%, 58% and 93% of annotated GO terms, respectively. Integrating the interaction data into a combined network increases the coverage of GO. Furthermore, the different annotation types of GO are not predominantly associated with one of the interaction data types. Collectively our results demonstrate that successful capture of functional relationships by network data depends on both the specific biological function being characterised and the type of network data being used. We identify functions that require integrated information to be accurately represented, demonstrating the limitations of individual data types. Combining interaction subnetworks across data types is therefore essential for fully understanding the complex and emergent nature of biological function.


Assuntos
Algoritmos , Regulação Fúngica da Expressão Gênica , Anotação de Sequência Molecular/estatística & dados numéricos , Mapeamento de Interação de Proteínas/estatística & dados numéricos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Biologia Computacional , Bases de Dados Genéticas , Redes Reguladoras de Genes , Anotação de Sequência Molecular/métodos , Mapeamento de Interação de Proteínas/métodos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Bioinformatics ; 28(1): 48-55, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22039210

RESUMO

MOTIVATION: Recent large-scale studies of individuals within a population have demonstrated that there is widespread variation in copy number in many gene families. In addition, there is increasing evidence that the variation in gene copy number can give rise to substantial phenotypic effects. In some cases, these variations have been shown to be adaptive. These observations show that a full understanding of the evolution of biological function requires an understanding of gene gain and gene loss. Accurate, robust evolutionary models of gain and loss events are, therefore, required. RESULTS: We have developed weighted parsimony and maximum likelihood methods for inferring gain and loss events. To test these methods, we have used Markov models of gain and loss to simulate data with known properties. We examine three models: a simple birth-death model, a single rate model and a birth-death innovation model with parameters estimated from Drosophila genome data. We find that for all simulations maximum likelihood-based methods are very accurate for reconstructing the number of duplication events on the phylogenetic tree, and that maximum likelihood and weighted parsimony have similar accuracy for reconstructing the ancestral state. Our implementations are robust to different model parameters and provide accurate inferences of ancestral states and the number of gain and loss events. For ancestral reconstruction, we recommend weighted parsimony because it has similar accuracy to maximum likelihood, but is much faster. For inferring the number of individual gene loss or gain events, maximum likelihood is noticeably more accurate, albeit at greater computational cost. AVAILABILITY: www.bioinf.manchester.ac.uk/dupliphy CONTACT: simon.lovell@manchester.ac.uk; simon.whelan@manchester.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Drosophila/genética , Evolução Molecular , Modelos Genéticos , Animais , Simulação por Computador , Drosophila/classificação , Genoma de Inseto , Funções Verossimilhança , Cadeias de Markov
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...